
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4415 63

Resource Discovery and Load Balancing in Grid

Environment

Bhairavnath Jadhav
1
, Riyaz Shaikh

2
, Irshad Sagar

3

Department of Computer Engineering, SP Pune University, India1,2,3

Abstract: Grid technology has emerged as a new way of large scale distributed computing with high-performance
orientation. Grid computing is being adopted in various areas from academic, industry research to government use.

Grids are becoming platforms for high performance and distributed computing. Grid computing is the next generation

IT infrastructure that promises to transform the way organizations and individuals compute, communicate and

collaborate. The goal of Grid computing is to create the illusion of a simple but large and powerful self-managing

virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of

resources. The main goal of load balancing is to provide a distributed, low cost, scheme that balances the load across all

the processors. To improve the global throughput of Grid resources, effective and efficient load balancing algorithms

are fundamentally important. Focus of this project is on analyzing Load balancing requirements in a Grid environment

and proposing a centralized and sender initiated load balancing algorithm. In this work we have proposed an efficient

load balancing algorithm which optimizes the response time and latency time with respect to the server.

Keywords: Load balancing, grid computing.

I INTRODUCTION
The rapid development in computing resources has

enhanced the performance of computers and reduced their

costs. This availability of low cost powerful computers

coupled with the popularity of the Internet and high-speed

networks has led the computing environment to be

mapped from distributed to Grid environments. In fact,

recent researches on computing architectures are allowed

the emergence of a new computing paradigm known as

Grid computing. Grid is a type of distributed system which
Supports the sharing and coordinated use of

geographically distributed and multiword resources,

independently from their physical type and location, in

dynamic virtual organizations that share the same goal of

solving large-scale applications. In order to fulfill the user

expectations in terms of performance and efficiency, the

Grid system needs efficient load balancing algorithms for

the distribution of tasks. A load balancing algorithm

attempts to improve the response time of user’s submitted

applications by ensuring maximal utilization of available

resources. The main goal is to prevent, if possible, the
condition where some processors are overloaded with a set

of tasks while others are lightly loaded or even idle.

Although load balancing problem in conventional

distributed systems has been intensively studied, new

challenges in Grid computing still make it an interesting

topic and many research projects are under way. This is

due to the characteristics of Grid computing and the

complex nature of the problem itself. Load balancing

algorithms in classical distributed systems, which usually

run on homogeneous and dedicated resources, cannot

work well in the Grid architectures. Grid Resource

Management is defined as the process of identifying
requirements, matching resources to applications,

allocating those resources, and scheduling and monitoring

Grid resources over time in order to run Grid applications

as efficiently as possible. Resource discovery is the first

phase of resource management. Scheduling and

monitoring is the next step. Scheduling process directs the

job to appropriate resource and monitoring process

monitors the resources. The resources which will be

heavily loaded will act as server of task and the resources

which are Lightly Loaded will act as receiver of task. Task

will be migrated from heavily loaded node to lightly

loaded node. Resources are dynamic in nature so the load
of resources varies with change in configuration of Grid so

the Load Balancing of the tasks in a Grid environment can

significantly influence Grid’s performance.

II. LOAD BALANCING CATEGORIES

Load balancing problem has been discussed in traditional

distributed systems literature for more than two decades
and various algorithms, strategies and policies have been

proposed, classified and implemented. Load balancing

algorithms can be classified into two categories, static and

dynamic.

A. Static load balancing Algorithms

Static load balancing algorithms allocate tasks of a parallel

program to workstations based on either the load at the

time nodes are allocated to some task, or based on average
load of workstation cluster.

Fig. 1 Static Load Balancing

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4415 64

The decisions related to load balance are made at compile

time when resource requirements are estimated. The

advantage in this sort of algorithm is the simplicity in

terms of both implementation as well as overhead, since

there is no need to constantly monitor the workstations for

performance statistics. The decisions related to load
balance are made at compile time when resource

requirements are estimated. The advantage in this sort of

algorithm is the simplicity in terms of both

implementation as well as overhead, since there is no need

to constantly monitor the workstations for performance

statistics. However, static algorithms only work well,

when there is not much variation in the load on the

workstations. Clearly, static load balancing algorithms

aren’t well suited to a grid environment, where loads may

vary significantly at various times.

A few static load balancing techniques are:

 Round-Robin Algorithm: tasks are passed to

processes in a sequential order, when the last process

has received a task the schedule continues with the

first process (a new round).

 Randomized Algorithm: allocation of tasks to

processes is random.

 Simulated Annealing or Genetic Algorithms: mixture

allocation procedure including optimization

techniques.

Drawbacks of Static Load Balancing Algorithms

 It is very difficult to estimate a-priori (in an accurate

way) the execution time of various parts of a program.

 Sometimes there are communication delays that vary

in an uncontrollable way.

 For some problems the number of steps to reach a

solution is not known in advance.

B. Dynamic load balancing Algorithms

According to the name dynamic load balancing algorithms

takes decision at run time, and use current or recent load

information when making distribution decisions. In grid
environment with dynamic load balancing

allocate/reallocate resources at runtime based on no a

priori task information, which determine when and which

task has to be migrated.

Fig. 2 Dynamic Load Balancing

After using effectively dynamic load balancing algorithms
can provide a significant improvement in performance

over static algorithms. But this comes at the additional

cost of collecting and maintaining load information, so it

is important to keep these overheads within reasonable

limits.

III. LOAD BALANCING STRATEGIES

There are three major parameters which usually define the

strategy of a specific load balancing algorithm. Some load
balancing strategies are being discussed in the following

section.

A. Sender-Initiated v/s. Receiver-Initiated Strategies

In sender-initiated policies, congested nodes attempt to

move work to lightly-loaded nodes. In receiver-initiated

policies, lightly-loaded nodes look for heavily-loaded

nodes from which work may be received. The sender-

initiated policy performing better than the receiver-

initiated policy at low to moderate system loads. Reasons

are that at these loads, the probability of finding a lightly-
loaded node is higher than that of finding a heavily-loaded

node. Similarly, at high system loads, the receiver initiated

policy performs better since it is much easier to find a

heavily-loaded node. As a result, adaptive policies have

been proposed which behave like sender-initiated policies

at low to moderate system loads, while at high system

loads they behave like receiver-initiated policies.

B. Global v/s. Local Strategies

Global or local policies answer the question of what

information will be used to make a load balancing decision

in global policies. The load balancer uses the performance
profiles of all available workstations. In local policies,

workstations are partitioned into different groups.

The benefit in a local scheme is that performance profile

information is only exchanged within the group. The

choice of a global or local policy depends upon the

behavior of an application, which will exhibit. For global

schemes, balanced load convergence is faster compared to

a local scheme since all workstations are considered at the

same time.

C. Centralized v/s. De-centralized Strategies

A load balancing strategy is categorized as either

centralized or distributed, both these define where load

balancing decisions are made. In a centralized scheme,

algorithm is located on one master workstation node and

all decisions are made there. In a de-centralized scheme,

the load balancer is replicated on all workstations. There

are different algorithms used in de-centralized scheme for

job selection. These algorithms are round-robin algorithm,

random polling algorithm etc.

IV. LOAD BALANCING POLICIES

Load balancing algorithms can be based on many policies;

some important policies are defined below.

 Information policy: This policy specifies what

workload information should be collected, when it is

to be collected and from where.

 Triggering policy: This policy determines the

appropriate period to start a load balancing operation.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4415 65

 Resource type policy: This policy classifies a resource

as server or receiver of tasks according to its

availability status.

 Location policy: This policy uses the results of the

resource type policy to find a suitable partner for a

server or receiver.

 Selection policy: This policy defines the tasks that

should be migrated from overloaded resources

(source) to most idle resources (receiver).

The main objective of load balancing methods is to speed

up the execution of applications on resources whose

workload varies at run time in unpredictable way. Hence it

is significant to define metrics to measure the resource

workload. Every dynamic load balancing method must

estimate the timely workload information of each

resource. Success of a load balancing algorithm depends
upon stability of the number of messages (small

overhead), support environment, low cost update of the

workload, and short mean response time which is a

significant measurement for a user. It is also essential to

measure the communication cost induced by a load

balancing operation, but to achieve all these, anyone

would have to face great challenge in grid environment V.

Load Balancing Mechanism.

There are some load balancing algorithms like virtual

machine migration, node reconfiguration by user level

thread migration, robin-hood an active objects migration
mechanism for intranet, load based graph method and data

consolidation.

A. Virtual Machine Migration (Live Migration)

In virtual machine migration snapshots of machine are

sent to other machine that’s why it is called the virtual

machine migration. There are two methods for virtual

machine migration. First one is live migration and second

one is regular migration. In live migration, running

domain between the different host machines is migrated

without stopping the job. In between it stops job and
gathers all required data then resumes. But this happens

only in same layer-2 network and IP subnet. In regular

migration generally stop the job then migrated.

B. Node Reconfiguration by User Level Thread

Migration

This mechanism makes application workload migrate from

source node to destination node, and then let source node

depart from original computing environment .There are

two mechanism for this, first one is node reconfiguration

by user-level thread migration and another one is node
reconfiguration by kernel level thread migration. Node

reconfiguration by user level thread migration has been

discussed in this survey. There are two implementation

methods of node reconfiguration. One is synchronous

method and the other is asynchronous method. In

synchronous method, all nodes are paused during

reconfiguration. On the other hand, in asynchronous

method all nodes continue to work simultaneously with

reconfiguration. Synchronous method may make

performance down even though it is easier to design.

Alternatively, better performance can be obtained by

asynchronous method as long as more attention paid to

correctly maintain the order of node reconfiguration

messages.

C. Robin Hood: An Active Objects Load Balancing

Mechanism for Intranet

Robin-hood algorithms present a new totally non

centralized solution, multicast channel to communicate,

and synchronize the processors and proactive tools to

migrate jobs between them. Proactive techniques are very

useful and provide the mobility and security in uniform
framework. This work focuses on dynamic load balancing.

Main objective of this algorithm is to improve the decision

time in non-centralized environment. In this mechanism

two basic things have been considered, first one to know

about the local load and second one to transfer the load

from high dense node to the less loaded node. This uses

the non-centralized architecture and non-broadcasting of

the balance of each node to reduce the overload in

network. This is totally non-centralized load balancing

mechanism, using the proactive library for the migration

of jobs, and a multicast channel for node coordination.

D. Load Graph Based Transfer Method

Load based graph method is based on network graph

where each node is represented with its load, whereas load

can be the number of users, average queue length or the

memory utilization. It uses analytic model and single load

determination policy throughout the system and load is

determined on the basis of memory utilization and average
queue length. This algorithm is based on three-layered

structure. Top layer is load balancing layer which takes

care of token generation, taking decision about task

transfer, middle one is called monitoring layer and acts as

an interface between top and middle and monitors load

changes and third one called communication layer which

take care of actual task transfer.

V. PROPOSED LOAD BALANCING

ALGORITHM

Load balancing is defined as the allocation of the work of

a single application to processors at run-time so that the

execution time of the application is minimized. Load

balancing is defined as the allocation of the work of a

single application to processors at run-time so that the

execution time of the application is minimized. This
chapter is going to discuss the design of proposed Load

Balancing algorithm. The choice of a load balancing

algorithm for a Grid environment is not always an easy

task. Various algorithms have been proposed in the

literature, and each of them varies based on some specific

application domain. Some load balancing strategies work

well for applications with large parallel jobs, while others

work well for short, quick jobs. Some strategies are

focused towards handling data heavy tasks, while others

are more suited to parallel tasks that are computation

heavy. While many different load balancing algorithms
have been proposed, there are basic steps that nearly all

algorithms have in common:

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4415 66

 Monitoring workstation performance (load

monitoring)

 Exchanging this information between workstations

(synchronization)

Efficient Load Balancing algorithm makes Grid

Middleware efficient and which will ultimately leads to
fast execution of application in Grid environment. In this

work, an attempt has been made to formulate a

decentralized, sender-initiated load balancing algorithm

for Grid environments which is based on different

parameters. One of the important characteristics of this

algorithm is to estimate system parameters such as CPU

utilization of each participating nodes.

VI. DESIGN OF LOAD BALANCING

ALGORITHM

Load balancing should take place when the load situation

has changed. There are some particular activities which

change the load configuration in Grid environment. The

activities can be categorized as following:

 Selection of static or dynamic load balancing

category.

 Defining the various parameters.

 Connection with the server.

 Sending threads to the server and executing results.

For static load balancing first of all Collect Host

information from user (i.e. ip address, port, request URL

etc), when we execute this will try to connect to the host.

If it get connected to host it will perform Simulating the

number requests to the Host using no. of threads, then it

will bring Result From the Server and populate into the

view area. For dynamic load balancing, Schedule the host

information for Dynamic Execution, Check the Date and

Time for every second comparing the scheduled date and
time, Try to connect the Host, Simulating the number

requests to the Host using no. of threads, Bring Result

From the Server and populate into the view area.

6.1 Efficient Load Balancing Algorithm

1. Start

2. For static load balancing, Collect Host information

from user (i.e. ip address, port, request URL etc.)

{Host name/IP, Port, Protocol type, Requested URL,

No of request, Execution time, Request to}

3. When we execute this will try to connect to the host.

If does not get connected again go to step 2.
4. If it get connected to host it will perform Simulating

the number requests to the Host using no. of threads,

then it will bring Result From the Server and populate

into the view area.

5. For dynamic load balancing, Schedule the host

information for Dynamic Execution.

6. Check the Date and Time for every second comparing

the scheduled date and time.

7. Try to connect the Host, Simulating the number

requests to the Host using no. of threads. If not

connected back to step 5.
8. Bring Result from the Server and populate into the

view area.

9. End

The following flow diagram shows the overall system

architecture and flow of the system for static load

balancing and dynamic load balancing.

Fig. 3: Flow Chart of Overview of Algorithm

Fig. 4: Flow Chart of Static load balancing Algorithm

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4415 67

Fig. 5: Flow Chart of Dynamic load balancing Algorithm

Latency is a measure of time delay experienced in a
system, the precise definition of which depends on the

system and the time being measured. Latencies may have

different meaning in different contexts. In simulation

applications, 'latency' refers to the time delay, normally

measured in milliseconds (1/1,000 sec), between initial

input and an output clearly discernible to the simulator

trainee or simulator subject. Latency is sometimes also

called transport delay. Some authorities distinguish

between latency and transport delay by using the term

'latency' in the sense of the extra time delay of a system

over and above the reaction time of the vehicle being
simulated, but this requires a detailed knowledge of the

vehicle dynamics and can be controversial.

Response time may refer to: Response time (technology),

the time a generic system or functional unit takes to react

to a given input Responsiveness, how quickly an

interactive system responds to user input.

Request methods- HTTP defines nine methods

(sometimes referred to as "verbs") indicating the desired

action to be performed on the identified resource. What

this resource represents, whether pre-existing data or data
that is generated dynamically, depends on the

implementation of the server. Often, the resource

corresponds to a file or the output of an executable

residing on the server.

HEAD- Asks for the response identical to the one that

would correspond to a GET request, but without the

response body. This is useful for retrieving meta

information written in response headers, without having to

transport the entire content.

GET- Requests a representation of the specified resource.

Requests using GET (and a few other HTTP methods)

"SHOULD NOT have the significance of taking an action

other than retrieval". The W3C has published guidance

principles on this distinction, saying, "Web application

design should be informed by the above principles, but
also by the relevant limitations."

POST- Submits data to be processed (e.g., from an HTML

form) to the identified resource. The data is included in the

body of the request. This may result in the creation of a

new resource or the updates of existing resources or both.

Status Code Definitions- Each Status-Code is described

below, including a description of which method(s) it can

follow and any misinformation required in the response.

200 OK- The request has succeeded. The information
returned with the response is dependent on the method

used in the request, for example:

GET an entity corresponding to the requested resource is

sent in the response; HEAD the entity-header fields

corresponding to the requested resource are sent in the

response without any message-body; POST an entity

describing or containing the result of the action; TRACE

an entity containing the request message as received by the

end server.

404 Not Found - The server has not found anything
matching the Request-URI. No indication is given of

whether the condition is temporary or permanent. The 410

(Gone) status code SHOULD be used if the server knows,

through some internally configurable mechanism, that an

old resource is permanently unavailable and has no

forwarding address. This status code is commonly used

when the server does not wish to reveal exactly why the

request has been refused, or when no other response is

applicable.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have described multiple aspects of Grid

Computing and introduced numerous concepts which

illustrate its broad capabilities. Grid Computing is

definitely a promising tendency to solve high demanding

applications and all kinds of problems. Objective of the

grid environment is to achieve high performance

computing by optimal usage of geographically distributed

and heterogeneous resources. But grid application

performance remains a challenge in dynamic grid

environment. Resources can be submitted to Grid and can

be withdrawn from Grid at any moment. This

characteristic of Grid makes Load Balancing one of the
critical features of Grid infrastructure. There are a number

of factors, which can affect the grid application

performance like load balancing, heterogeneity of

resources and resource sharing in the Grid environment. In

this project we have focused on Load Balancing and tried

to present the impacts of Load Balancing on grid

application performance and finally proposed an efficient

Load Balancing algorithm for Grid environment. Every

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4415 68

Load Balancing algorithm implements five policies. The

efficient implementation of these policies decides overall

performance of Load Balancing algorithm. In this work we

analyzed existing Load Balancing algorithm, proposed and

implemented an enhanced algorithm which more

efficiently implements three out of five policies
implemented in existing Load Balancing algorithm. These

three policies are: Information Policy, Triggering Policy

and Selection Policy.

The future scope of this work includes implementing the

application using tools such as Globus or gridsim for

showing the simulation, Migration of jobs, Design and

Testing of load balancing algorithm in a Multi-middleware

scenario. A further extension to this work would be in

making this Load balancing Module a middleware

independent module.

REFERENCES
[1]. Yajun Li, Yuhang Yang Rongbo Zhu “A Hybrid Load balancing

Strategy of Sequential Tasks for Computational Grids” 2009

International Conference on Networking and Digital Society

[2]. B. Yagoubi and Y. Slimani “Task Load Balancing Strategy for Grid

Computing” Journal of Computer Science 3 (3): 186-194, 2007

ISSN 1546-9239, 2007 Science Publications

[3]. Wang Qiong, He Xinhua, Zhao Yingkun “Load Balancing

Algorithm Based on Dual-Load Prediction” 2009 Second

International Conference on Intelligent Networks and Intelligent

Systems

[4]. Belabbas Yagoubi and Meriem Medebber “A Load Balancing

Model for Grid Environment” 1-4244-1364-8/07/$25.00 ©2007

IEEE

[5]. Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma

“Performance Analysis of Load Balancing Algorithms” World

Academy of Science, Engineering and Technology 38 2008

[6]. A.K. Aggarwal, Robert Kent and Jun Wei “PATH Algorithm for

Adaptive Load Balancing on a Grid”

[7]. Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma

“Performance Analysis of Load Balancing Algorithms” World

Academy of Science, Engineering and Technology 38 2008

[8]. Robert Elsässer Burkhard Monien Stefan Schamberger “Load

Balancing in Dynamic Networks” Proceedings of the 7
th

International Symposium on Parallel Architectures, Algorithms and

Networks (ISPAN’04) 2004 IEEE

BIOGRAPHIES

Bhairavnath Jadhav is pursuing Bachelors

of Engineering in SKN-SITS, Lonavla, Pune.

Riyaz Shaikh is pursuing Bachelors of

Engineering in SKN-SITS, Lonavla, Pune.

Irshad Sagar is pursuing Bachelors of

Engineering in SKN-SITS, Lonavla, Pune.

